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INTRODUCTION

During the last 20 years there has been a continued increase in the
use of statistical methods. In practically all the branches of science

that involve quantitative data biometrical or statistical methods
have been found helpful. For the seed analyst some of these methods
would seem indispensable, and the economic importance of seed test-

ing justifies a careful study of the problems involved by a competent
statistician. To determine the best and most accurate methods is a
task for the trained mathematician, and although the development of

the formulas may be highly technical analysts may look forward to a
series of procedures that will be simple in their application.

It is the aim of this circular to indicate possible applications of some
of the more simple formulas that have found use in other branches
of science.

The most obvious application of statistical methods to the problems
of seed testing is in providing measures of accuracy for the various
determinations. Whenever a quantitative determination is recorded,
whether it be a percentage of germination, the number of dodder seeds
in a sample of clover, a temperature, or the length of a stick, some
measure of accuracy is needed if the value recorded is to have definite

meaning. When none is given the reader must supply it. This is

often done unconsciously, but it is done nevertheless. If it is stated
that a given plant is 3 feet high it is not assumed that the plant is

exactly 3 feet high. Most readers would probably picture a plant
somewhere between 2% and 3K feet high. If inches are given, the

1 Paper read before the Association of Official Seed Analysts of North America at New York, N. Y.,
January 2, 1929.
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reader has a right to assume an accuracy of the order of 1 inch,
though this is not always warranted.
Everyone knows that if a measurement is repeated it will not

always give exactly the same result, and consciously or unconsciously
some latitude is allowed. Those who refuse to attach some measure
of accuracy to a determination should realize that for the omission
they are compelling the reader to substitute a guess.

Any series of determinations based on the same material will be
grouped around a mean value from which the individual determina-
tions will depart more or less. If the values are widely scattered it

is known that the accuracy is low and that a large error must be
expected in measurements of this kind. Some measure of this error
is needed in order that the reliability of such measurements may be
estimated.

MEASURES OF VARIATION

Nothing definite can be learned from the limits of the scatter, or

range, for this is not a fixed value, but continues to increase as the
number of observations is increased.

The departures from the mean value may be averaged by summing
the amounts by which each value departs from the mean and divid-

ing by the number of observations. This value is termed the average
deviation. As the number of observations increases the average
deviation approaches a fixed value, and can be and has been used as

a measure of accuracy.

Although an average deviation may be used as a measure of

accuracy, a slightly different value has been found much more
serviceable. It is called the standard deviation. A standard
deviation is calculated by squaring the departures from the mean
before they are averaged and then extracting the square root of the

average. This gives a value about 20 per cent greater than the aver-

age deviation. It differs from an average deviation by giving an
increased weight to wide departures.

There are many who become discouraged as soon as a standard
deviation is mentioned. It has a rather unfamiliar sound, but if it

is thought of as a slight modification of the average of individual

departures from the mean it may appear less formidable.

Just as the height of two groups is compared by comparing the

average heights, so in comparing the variation of one group with that

of another it is possible to use the average variation or standard
deviation. The standard deviation has many properties that render it

exceedingly useful in a great variety of ways.
Befor? the uses of the standard deviation are discussed, one more

term should be introduced. This is " variance," a term applied to

the square of the standard deviation. It will be recalled that in

calculating the standard deviation of a normal distribution the

squared departures were averaged. This mean of the squared
deviations is the variance, and for many calculations it is simpler

to use it in this form without extracting the square root.

The formula for variance and standard deviation is

—

cr= A/2dViV (1)

where <r
2= variance, <x= standard deviation
d— departure from mean.
N= number, 2= summation.
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The application of formula 1 may be illustrated by a series of 10

germination tests (Table 1):

Table 1.

—

Series of 10 germination tests, illustrating the application of formula 1

Test No.

Percent-
age of

germina-
tion

d d' Test No.

Percent-
age of

germina-
tion

d d*

1 80
82
77
81

79
78

+2
-3
+1
-1
-2

4°

9
1

1

4

7 79
78
82
84

-1
-2
+2
+4

1

? 8 4
3

:::::::::::::::::::

9 . 4
4 10— 16

5_...

6 Mean 80 44=2d»

^ V4.4 = 2.1=o- or standard

The formula gives

—

2^7^=44/10 = 4.4 = cr
2 or variance,

deviation.

The standard deviation or variance may be used not only to meas-
ure the accuracy of single determinations but also to measure the
accuracy of means or averages. If the variance of individual deter-

minations is known, the variance of the mean of any number of such
determinations will be the individual variance divided by that
number; or, in dealing with standard deviations, the standard devia-

tion of the mean will be the standard deviation of individual deter-

minations divided by the square root of the number.
To speak of the variance or standard deviation of a single mean,

really implies that if there were a series of such means they would
be distributed about a general mean with the stated standard
deviation.

In most experimental work an entire population from which to

calculate a standard deviation is not to be had, but the worker must
take as the best estimate of the standard deviation one derived from
a comparatively small number of observations. If the numbers are

few this estimated standard deviation will be too small, and to correct

for the difference in deriving the variance or the standard deviation
of a mean from the individual variance it is necessary to divide by the
number minus 1 instead of by the number.
The formula for the standard deviation of a mean is

—

(2)«rM=V^/iV-l__.
where o-M= standard deviation of the mean,

c= standard deviation of individual values,
N=number of individual values.

As an example, assume a series of 10 germination tests. The mean
of the 10 tests being 75 per cent and the variance of the individual
tests being 18 per cent, the variance oi the mean is then 18/9 = 2 per

cent, and the standard deviation is-\/2 = 1.4 per cent. The mean may
be written 75 ±1.4 per cent. This indicates that if the tests were
repeated until there was a series of means each based on 10 tests

these means might be expected to have a standard deviation of 1.4

per cent. The standard deviation of a mean, or the best estimate
of it that can be made, is sometimes called the standard error. More
frequently 0.6745 of the standard deviation is termed the probable
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error. In American publications the p]us-or-minus sign (±) placed
before a value indicates a probable error.

The reason for taking this particular fraction of the standard
deviation as a measure of accuracy is that on an average it will include

one-half of the deviations. As a measure of tolerance the probable
error has little to recommend it except usage. No one would place

confidence in a result that will be right only one-half or three-quarters

of the time.

It has become a rather general practice to take three times the
probable error as the limit of significance. Since the probable error

has always to be multiplied by 3 or some other number before sig-

nificance can be estimated, the use of the probable error would seem
to have no advantage over the standard deviation, and there is the

disadvantage that probable errors must be converted back into

standard deviations before probability tables can be used.

Engledow and Yule go so far as to say that "Statement of the

probable error in modern work is an unmitigated nuisance, and the
investigator is recommended to confine himself to the standard error

and accustom himself to thinking in terms of it.
2

If seed analysts are not already committed to the use of probable
errors, the use of the standard deviation or standard error is recom-
mended.

TYPES OF DISTRIBUTION

Before taking up the uses of the standard deviation it will be
necessary to consider the kinds of distributions for which measures
of accuracy are needed.
From a statistical standpoint, the determinations which the seed

analyst is called upon to make fall into three classes, each character-

ized by a particular frequency distribution. These three distribu-

tions are (1) the normal frequency, (2) the binomial distribution,

and (3) the Poisson series.

NORMAL FREQUENCY

To the normal curve is referred all determinations such as weights
and linear measurements that may have any value and that occur with
approximately equal frequency above and below the mean value.

The mathematical requirements for a normal distribution are

rather rigid, and few biological data conform completely. Fortu-
nately, however, the methods worked out for the normal distribution

may be applied without appreciable error to distributions not strictly

normal.
Most of the applications of statistical methods to the problems of

seed testing involve the use of tables of the normal or Gaussian
distribution. To use these tables intelligently it is desirable to

understand something of how they are constructed.
A frequency distribution assumes a large number of measurements

thrown into groups of a uniform range. Assume 1,000 measurements
of length, for example, having a mean of 40 centimeters and a class

range of 5 centimeters. The first group above the mean would
include all measurements between 40 and 45 centimeters, the second

3 Engledow, F. L., and Yule, G. U. the principles and practice of yield trials. 78 p., illus.

London. 1926. (From Empire Cotton Growing Rev. 3: 112-146, 235-267, illus. 1926.)
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group those values falling between 45 and 50 centimeters, etc. Below
the mean there would be a corresponding series of descending values.

The groups near the mean will contain large numbers, and the number
in each successive group will be less as the distance from the mean
increases. If the standard deviation is small, a very large proportion
of values will fall in the central groups, and the measurements will

extend but a short distance from the mean. Assuming the standard
deviation to be 10 centimeters, the values are plotted in Figure 1.

The first step in plotting the values is to transpose the scale into

terms of the standard deviation. This is done by expressing the
values as departures from the mean and dividing by the standard
deviation. Thus 35 centimeters departs from the mean — 5 centimeters.

This divided by 10, the standard deviation, gives —0.5. The class

limits in terms of the standard deviation are given in the second line

below the base, labeled a. If the 1,000 measurements are distributed
in perfect agreement with a normal frequency there should be one
individual below 10 centimeters, five individuals between 10 and 15
centimeters, etc., as in the diagram. The sum of these numbers is 1 ,000.

&QQ

'<&&

/OG

&/** S /» /S SO 2S JO JS 40 <4& so ss eo
CT -&S S.O -2.S -2.0 -AS -A.O -.S O .S /.O /~T 2.0

6S ?0 7S
2.S sf.O &&

Figure 1.—Normal frequency polygon and curve. Class range 5 centimeters, standard deviation
10 centimeters. Total population, 1,000

It is easily understood that if the measurements had been grouped
into smaller classes, say of 1 centimeter instead of 5, the steps in the
polygon would have been less abrupt and the boundary would more
closely approximate the smoothed curve that has been drawn. This
is the curve of normal frequency, and if properly drawn it incloses

the same area as the polygon. Theoretically, the curve does not touch
the base, but extends to infinity in either direction. However, the
area of the curve beyond the limits drawn is so small that it may
usually be neglected or included in the last groups, as has been done
in the diagram. The area in the curve beyond the limits of the
diagram is less than one-fourth of one unit.

The two dotted lines of the diagram are so placed as to include
between them one-half the total area. The lines are equidistant
from the mean, and this distance is 0.6745(7, or about two-thirds of
the standard deviation, in this instance 6.745 centimeters. It is

now apparent that if from this population individuals are taken at
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random, one-half of them will depart from the mean by less than
0.6745c and one-half will depart by more than that amount. This
departure of 0.6745<r is called the probable error.

These relations hold good for all normal distributions, regardless of

the imits in which the measures are recorded and whether the popu-
lation is uniform or variable. In Figure 2 a more uniform population

is plotted to the same scale. Here the standard deviation is taken as

5 centimeters instead of 10 centimeters. As before, there are 1,000

units in the entire polygon. The two classes adjacent to the mean
each contain 352 individuals, as compared to 160 in Figure 1, but if

the classes are taken in
400\ ^

i terms of the standard
deviation the number in

corresponding groups is

the same. Thus, in Fig-

ure 1 a distance from the
mean equal to the stand-
ard deviation includes

two groups which to-

gether contain 352 indi-

viduals. By expressing

the departures from the
mean in terms of the
standard deviation all

normal frequencies may
be compared.
Normal frequency

tables are designed to

give the ratio of the areas

of the two portions into

which the normal curve
is divided by a line

erected at any point on
the base. Since each in-

dividual occupies a unit

of area, the number of

individuals may be sub-
stituted for the area.

The distances along
the base measured from
the mean or center of the

curve are the abscissas,

and perpendicular lines

from the base to the
boundary of the curve are the ordinates. The relations of area,

abscissa, and ordinate have been tabulated in a number of ways.
For present purposes the relation between area and abscissa is all that
need be considered. Perhaps the most widely used tables are those
of Sheppard,3 which have been republished by Pearson 4 as his

Table 2. In these tables the argument or primary division given in

the first column is the abscissa, or departure from the mean, measured

jso

sZOO

zso

eoo

/&o

/CO

JTO

o
<?Sf. 20 2& _?<?

0~ -4.0 -\3.0 -2.0
JIT SO
J.O 4.0

Figure 2.—Normal frequency polygon and curve. Class range 5
centimeters, standard deviation 5 centimeters. Total popula-
tion, 1,000

8 Sheppard, W. F. new tables of the probability integral. Biometrika 2: [174]-190. 1902.
* Pearson, K. tables for statisticians and biometricians. Ed. 2, pt. l, 143 p., illus. London

[1924J.
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in terms of the standard deviation, and is labeled "x." In the second

column, labeled "1/2 (1+a)," is given the corresponding area of the

larger portion of the entire curve or population cut off by the ordinate

at point "x." The area of the entire curve is taken as one. The
tabulated entries, therefore, are fractions beginning at 0.5 or one-half

the population for x = o.

C. B. Davenport, 5 in his Table 4, gives a slightly different arrange-

ment. The abscissas or departures from the mean are labeled x/cr

and the values are given to three places instead of two. The area

of only one half of the curve is considered, and the total area is taken
as 100,000. To make the values equal those of Pearson's table it is

necessary to move the decimal point five places to the left and to

add 0.5.

The Kelley-Wood tables 6 have the reverse arrangement. The
argument is the portion of the curve between the mean and the point

x and is labeled "/." The corresponding values of x are given in the

second column. In addition, under the columns headed U/p" and
"g" are given the larger and smaller portions of the entire curve;

f is thus 0.5 + / and 2 = 0.5 — 7.

' This arrangement is convenient whenever the portion of the popu-
lation is known and the desire is to find the corresponding departure
from the mean. As an example, suppose the object is to find the

tolerance that would make the degree of certainty 1 in 100, or 0.01.

Opposite g=0.01 or ^ = 0.99 the value of x is given very exactly as

2.326348. In Pearson's or Davenport's tables 0.99 of the area in the

values under 1/2 (1 + a) can not be located exactly without interpo-

lation. It can be seen, however, that x will lie somewhere between
2.32 and 2.33.

Equivalent terms in the three tables are given in Table 2.

Table 2.

—

Comparison of equivalent terms in the tables of Kelley-Wood, Pearson,
and Davenport

Term

Departure from the mean in terms of the standard deviation

Area between ordinates at the mean and at X
Area in larger portion of entire curve

Area in smaller portion of entire curve

Kelley-
Wood Pearson

X
[l/2(l+a)]-0.5

[1/2 (1+a)]

[1-1/2 (1+a)]

Davenport

l/2q

1,000
l/2o

1,000

0.5-

+0.5

l/2q
"

1.000

If it is remembered that area and population are interchangeable
and that departures from the mean are expressed in terms of the
standard deviation, there should be little difficulty in using tablesjof

the normal frequency.
In the applications that follow where tables of the normal frequency

are used to determine probabilities the smaller portion of the entire
area is the value used. This is the Kelley-Wood q_ or 1 — Pearson's %
(1+a), where the entire area or population is taken as unity. Thus

4 Davenport, C. B. statistical methods, with special reference to biological variation. Rev.
id. 3. 225 p., illus. New York and London. 1924.
6 Kelley, T. L. statistical method. 390 p., illus. New York. 1923.
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at the mean or zero departure the value is 0.5, i. e., one-half the
population will have the value of the mean or less than the mean.
At 2, or twice the standard deviation above the mean, the value is

0.023; that is, 97.7 per cent of the population is below this value and
but 2.3 per cent will exceed the mean by more than twice the standard
deviation. Since the distribution is symmetrical, there will also be
2.3 per cent that fall below the mean by more than twice the standard
deviation. In using probabilities as a measure of certainty it should
be noted whether the probability is to include deviations in one or

both directions. It is assumed that in most questions of tolerance it

is desired to measure the probability in but one direction. But in

estimating the significance of a difference between two samples,
variations in both directions should be taken.

BINOMIAL DISTRIBUTION

The second type of distribution, the binomial, is one in which the

values must fall into a limited number of classes, in numbers cor-

responding to the coefficients of an expanded binomial. As an example,
if three coins are repeatedly tossed and the number of heads recorded
there are but four possible values—no heads, one head, two heads,

or three heads. No intermediate values are possible. The distribu-

tion of the numbers into these four classes will be in the ratio of

1/8:3/8:3/8:1/8.^ These numbers are the coefficients of 0.5^ + 0. 5q
raised to the third power, p being" the expectation of getting a head
and gr the expectation of getting a tail.

A germination test involving 100 seeds corresponds to a case where
100 coins are tossed, but in this case the expectation of throwing a head
will not be 0.5 unless the germination is 50 per cent. If the germination
is 80 per cent the expected distribution would be given by 0.8p + Q.2q
raised to the hundredth power, a laborious process that fortunately
does not have to be performed.
So far as the seed analyst is concerned, binomial distributions call

for no special treatment. The values to be dealt with are percentages
or means, and these will be normally distributed, making possible

the use of the tables of normal distribution. The only difference in

procedure is that here a short cut for deriving the standard deviation
of a ratio or percentage may be utilized.

The formula for the standard deviation of a percentage is

—

v%=Jpq[N (3)

where a-% 2— variance of percentage,
o-% = standard deviation of percentage,
p=the percentage,
q=lQ.Q- p ,

N= number.

If N is small, N— 1 should be substituted for N. It will be noted
that this formula differs from that for the standard deviation of a
mean by the substitution of pq for the individual variance.

POISSON SERIES

The Poisson series, the third kind of distribution, could have no
better illustration than is given by the distribution of the number of

dodder seeds in successive small samples of clover seed. The values
are restricted to whole numbers, and if the mean number is small the

distribution is far from symmetrical.
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The departure of a Poisson series from a symmetrical distribution

is evident if the frequency of numbers from samples that should
contain one dodder seed is considered. There can be but one class

below the mean, that is, samples with no dodder seeds, while above
the mean there will be samples with 2, 3, 4 or more seeds. In fact,

samples with no seeds will be much more frequent than samples with
1, the mean number.

Special probability tables giving the expected distribution of

samples with means from 1 to 30 have been published, and from these

the probability of departures from the mean of any given magnitude
can be read directly.

When the mean or expected number is above 30 the distribution

is practically symmetrical, and tables of the normal distribution may
be used. In a Poisson series the variance equals the mean number.
For example, if a lot of seed has dodder at the rate of 36 dodder seeds

per 100 grams, the number of dodder seeds in successive samples of

100 grams will have a variance of 36, or a standard deviation of

6 seeds.

APPLICATION OF THE STANDARD DEVIATION

In the following illustrations of the standard deviation as a mesaure
of the errors in seed testing, no account has been taken of the personal
equation or individual differences in judgment.
By adopting rigid and specific rules for testing, individual variation

can be greatly reduced, but it can never be eliminated entirely. The
omission of this type of variation from present consideration should
not be interpreted as indicating that individual differences in judg-
ment are not a fit subject for statistical analysis. Determinations
made by different operators may be treated in the same manner as

different determinations by the same operator.

In what follows, however, it is assumed that all tests are made by
the same individual.

With the exception of tests for noxious seeds when the number in

the sample is small, all measures of accuracy and degrees of certainty
that the seed analyst will encounter may be interpreted by means of

the table of normal probabilities. Examples may be taken with
equal propriety from either purity or germination tests.

As the first example, take the standard deviation as a measure of

accuracy in weighings of impurities.

Suppose it is known that the weights of impurities have a standard
deviation of 1 milligram. That is, repeated weighings of the same lot

of impurities are distributed around a mean with a standard deviation
of 1 milligram. Suppose, now, the purity of a stock of seed is said to

be such that in the sample tested there should be less than 10 milli-

grams of impurities, and the sample is found to have 13 milligrams of

impurities. This is a difference or departure of 3 milligrams and is

three times the standard deviation. Opposite 3 in the probability
tables is the value 0.9987, indicating that 99.87 per cent of the weigh-
ings of samples having a mean of 10 milligrams of impurities would
show 13 milligrams or less. There is then a probability of 0.0013, or
1 in about 750, that the departure is the result of errors in weighing.
This determination tells nothing regarding errors from other sources

than weighing, and without further knowledge it would be entirely

unwarranted to assume that the impurities in the original lot of seed

55471—29 2
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were in excess of the stipulated quantity. It does indicate, however,
that errors of weighing will not account for the difference.

In using the standard deviation as a measure of the limits of ran-
dom sampling, great care should be exercised that the variant meas-
ured has not been subject to sources of variation that were not taken
into consideration when the standard deviation was determined. In
the above illustration the standard deviation was determined from
repeated weighings of the impurities from the same sample, whereas
the 13 milligrams of impurities in the example was subject to errors of

sampling in addition to the errors of weighing. In this example the
distinction is obvious, but much of the criticism against the use of

statistical methods is occasioned by overlooking this distinction in

less-obvious instances.

Mistakes in the direction of too great leniency are less difficult to

guard against. Thus if the sample gave 11 milligrams of impurities,

a standard deviation of 1 milligram indicates that although the sample
shows impurities in excess of the quantity stipulated, there is about
one chance in three that the departure is due to an error of weighing,
and there is little occasion to look farther for an explanation of the
difference.

Another use of the standard deviation is in determining whether
two samples may represent random variations from the same popula-
tion or must have been drawn from different populations. Another
way of stating this problem is to ask whether the difference between
the two samples is significant. The probability that shall be taken
as significant is a matter of individual preference, but the standard
deviation will tell what the probability is, which may or may not
be accepted.
As an illustration, suppose two purity tests have been made from

what is assumed to be the same lot of seed. Suppose it is known
that the weighings of impurities have a standard deviation of 2

milligrams. That is, repeated weighings of the same lot of im-
purities are distributed about a mean with a standard deviation of

2 milligrams. If the two tests gave 15 and 24 milligrams, could
this difference of 9 milligrams be ascribed to random errors of weighing?
The variance of a difference between two determinations is the

sum of the two individual variances. The formula for the variance
and standard deviation of a difference is

—

crA^V^W (4)
where <rA2= variance of difference between a and b,

<rA= standard deviation of difference,
cra

2= variance of a,

o- b
2— variance of b.

In this instance 2 2 + 2 2 = 8 as the variance of the difference. The
square root of 8, or 2.8, is the standard deviation of the difference.

The difference between the two weighings is 9, or 3.2, times the stand-
ard deviation of the difference. The table gives the probability of

3.2 times the standard deviation as 0.0014. Since either value might
have been the greater, take twice this value, or 0.0028—about 1 in

.350.

It is evident that it can not be concluded from these two tests

that the samples were not drawn from the same bulk. To test this

point, the standard deviation of a series of samples drawn from the
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1

same bulk must be determined. With the new standard deviation

derived from repeated samplings the procedure is the same.
The most frequent use of the normal distribution and accompany-

ing tables is in connection with differences in mean values.

In dealing with means, a normal distribution may be assumed,
although the individual values are distributed in accordance with
the binomial or Poisson series. In germination tests the individual

measurements can take but two values, dead or alive, and all per-

centages of germination are mean values. With the number of seeds

used in any practical germination test the percentages of germina-
tion will be distributed in close agreement with a normal frequency,
and the table of probabilities may be used to decide whether a differ-

ence in the percentage of germination of two samples may be ascribed

to chance fluctuations from a common mean, or whether some other
explanation must be sought.
As an illustration, assume that one test of 200 seeds gives 75 per

cent germination. Another test of 100 seeds gives 66 per cent
germination. Is there a significant difference between the two tests?

The mean of both tests is -^r - = 72 per cent; p =

72, 2 = 28, pq = 2,016.

By formula 3 variance first test = 2,016/200 = 10.08, variance sec-

ond test = 2,016/100 = 20.16.

By formula 4 variance of difference = 10.08 + 20.16 = 30.24. Stand-

ard deviation of difference = -yjs0.24 = 5.5, A = 75 -66 = 9, A/<rA =
9/5.5 = 1.64. The probability table for 1.64* gives 0.0505. Since
either test might have been the larger the probability is 2X0.505 =
0.101, or 1 in about 10. There is thus slight reason to go beyond the
error of sampling for an explanation of the difference.

Applications of the standard deviation could be multiplied indefi-

nitely, but it is hoped that the foregoing examples are sufficient to

enable the reader to use it in other related problems. Although the
calculations are extremely simple, they may seem laborious as a
routine procedure. For any particular application that should be
adopted as standard procedure most of the calculation could be
eliminated by the construction of special tables. For example, it

would be the work of but a few hours to prepare a table that would
give at once the variance and standard deviation for all combinations
of percentage and number of seeds.

DEGREE OF CERTAINTY

Most of the problems that confront the seed analyst can be sum-
marized into the single question: Does an observed value differ

from some other value by an amount too great to be ascribed to

unavoidable error?

This question can not be answered with complete certainty, because
there are no absolute limits to the errors of sampling. The most that
can be achieved is such a high degree of certainty as will make the
reporting of a mistake very improbable. The degree of this improba-
bility is not a matter of statistics, but must be determined by consid-
erations of personal responsibility.

What statistical methods can do in this connection is to enable the
operator to maintain any particular standard that is decided upon.
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For the present this standard may be termed the degree of certainty
and expressed as a probability. For example, if it is decided that
satisfactory protection is achieved with a procedure by which the
chances against error are 99 to 1, that degree of certainty would be
indicated by the probability expression 0.01, whereas 0.001 would
indicate a degree of certainty of not more than 1 mistake in 1,000
tests.

The degree of certainty may vary with the use to be made of the
findings, but not with the nature of the data or methods of calculation.

It should not be confused with such measures of accuracy as standard
error and probable error. If the percentage of germination is given
as the result of a test, the observed value may be accompanied by
an expression of the standard error as a measure of the accuracy of
the determination. But if one is to go on record with a positive
statement that the true germination is less than a certain percentage,
some degree of certainty should be adopted. The standard error is a
technical descriptive term, whereas degree of certainty like " margin
of safety" indicates the element of risk.

TOLERANCE

To fix the limits of tolerance in any definite way it would seem
desirable to recognize that there are two factors, more or less inter-

changeable, to be considered. These factors are (1) the magnitude
of the errors involved in making the determinations and (2) the
degree of certainty that is to be adopted.
The standard deviation gives a measure of the errors that may be

expected as a result of errors of sampling, etc., but the degree of

certainty is a matter of choice. No matter what tolerance is allowed,

there is always some possibility that a variation of testing will exceed
that limit. It may be urged that tests should be repeated. Repe-
tition reduces the error but does not eliminate it, and it must be
admitted that since in practice there is a limit to the number of

repetitions, or, in other words, to the size of the sample tested, there
will always be a certain, though perhaps small, proportion of cases

where injustice is done. Statistical analysis makes it possible to fix

that proportion rather definitely. Take, for example, a stated ger-

mination of 80 per cent and a standard deviation of 3 per cent. If

a tolerance of twice the standard deviation, or 6 per cent, is allowed,

there will be on the average 2.3 per cent of those cases having a true

germination of 80 per cent that will be reported as falling below the
tolerance and about the same percentage of cases having a germina-
tion of 74 per cent that will be reported as 80 per cent or above. If

this percentage of mistakes is considered too large there are two ways
of reducing it: (1) By reducing the standard deviation, that is, by
increasing the size of the sample or perfecting the method of testing

in some other way, or (2) by increasing the tolerance.

By increasing the tolerance from 6 to 7 per cent the percentage of

errors of border-line cases will be reduced to 2 per cent— 1 per cent
above and 1 per cent below.

Published tables have eliminated all calculations from the determin-
ation of these percentages. If the tolerance is expressed in terms of

the standard deviation, the probability or percentage of cases that will

fall outside the tolerance may be read directly from the tables as a
single value.
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TOLERANCE IN PURITY TESTS

The unavoidable error in a purity determination from the statistical

standpoint would seem to result from two independent sources.

There are (1) the errors connected with the identification and weighing
of the impurities and (2) the error of random sampling.
The error of weighing is itself very complex, made up of errors

from such sources as the sensitivity and reliability of the balance,

errors in the weights used, fluctuations in the atmospheric humidity,
and the accidental loss of material. The resultant of these and
doubtless other factors will influence the observed weight of any
particular sample. Repeated weighing of the same sample will give
values that in all probability will be distributed normally about a
mean with a standard deviation that will vary with different material.

With carefully standardized methods it should be possible to

determine a satisfactory average standard deviation for each type
of seed.

In the absence of definite information regarding the magnitude of

the standard deviation due to errors other than that of random
sampling, it will be necessary to represent it by a symbol. Let <rw
stand for the standard deviation of weighing, etc., expressed as a
percentage of the sample. If it is assumed that the impurities will

be made up of discrete particles of approximately the same weight
as the individual seeds being tested, the error of random sampling
may be predicted with some degree of accuracy. This assumption
does not seem unreasonable, since sieving and winnowing may be
expected to remove all particles that differ materially from the
seeds in either size or specific gravity. Under these conditions the
variance in percentage is the product of the percentage of pure seed
and the percentage of impurities divided by the estimated number
of seeds in the sample.
The total standard deviation of the percentage of pure seed is the

square root of aw
2 plus the variance due to random sampling.

Let N equal the number of seeds in the sample, p the percentage
of pure seed, q the percentage of impurities, aw the standard devia-
tion of weighing expressed as a percentage, a the standard deviation
of percentage of pure seed

—

then <r=-yjpq/n + <r w
% (5)

It would be of interest to compare the official tolerance with a
tolerance based on the standard deviation. This can not be done
accurately without a knowledge of the nature and size of the standard
deviation of weighing. It seems probable, however, that this com-
ponent will be relatively unimportant, and it may be of some interest

to see what degree of certainty the official tolerance affords for

samples of different sizes and percentages of pure seed, considering
errors of random sampling only. For seed that is 99 per cent pure
the official procedure provides a degree of certainty that ranges
from 0.02 for samples that contain 2,000 seeds to 0.00001 for samples
of 11,000 seeds. At 95 per cent the corresponding range is from
0.007 to 0.000000003, and at 85 per cent the range is from 0.00003
to something less than 10~ 10

.

These rather absurd probabilities for the lower percentages and
larger samples will be somewhat reduced when errors of weighing
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are taken into consideration, but this will not alter the fact that

the official tolerance gives a much higher degree of certainty for

low percentages of purity than it does for high percentages.

TOLERANCE IN GERMINATION TESTS

From the standpoint of statistical treatment tolerance in germina-
tion tests appears to be a much simpler problem than purity tolerance.

In germination tests there are two sources of error, (1) errors in the

technic of germination and (2) errors of random sampling; but germi-
nation tests afford a rather definite measure of both types of error.

With standardized conditions of germination, errors in technic

should be small except for an occasional mistake. Fortunately, the
standard procedure, that calls for the separate testing of four lots

of 100 seeds each, should make it possible to detect gross errors

except in those instances where the error is the same for all of the
four lots. It would seem to be correct procedure to reject any test that
shows a variation too large to be explained as an extreme fluctuation

of sampling.
The expected variance of percentages for lots of 100 is p times q

divided by 100. It will be remembered that p is the percentage of

live seeds and q the percentage of dead seeds. The standard devia-
tion is, of course, the square root of the variance.

There is some question regarding the most exact method for the
rejection of aberrant percentages, but since the question does not
involve a matter of justice but is to determine whether the test

should be repeated, a simple method would seem to be adequate.
A very satisfactory method can ~be based on the magnitude of the

difference between the percentage of germination of the aberrant
100 seeds and the percentage of germination of the other 300 measured
by the standard deviation of the difference. The method can be made
as conservative as desired by varying the degree of certainty. Since
any one of the four members may be the outstanding percentage, the
values given in the probability table should be increased accordingly,
and a degree of certainty of 1 in 100 would be represented by 3.02
times the standard deviation instead of 2.33.

As an example of this method for rejecting aberrant germination
tests, assume four tests each of 100 seeds giving germination percent-
ages of a = 96, 6 = 98, c = 97, and d = 87. Can the test with 87 per
cent be considered an extreme fluctuation? The degree of certainty
is taken as 3.02, or 1 in 100.

Let ilf= mean percentage of germination of a, b, c, and d=94.5;
ilf a_ c=mean percentage of germination of a, b, and c=97;M d= percentage of germination of d=87;
A=M a_c-M d=10;
N= number of seeds in a, b, and c=300;
Nd= number of seeds in <2=100;
p= percentage of live seeds in M= 94.5;
<7=percentage of dead seeds in M= 5.5;
<ra_ c

2= variance of A/ a_e
= pq/N= 94.5 X 5.5/300=1.73;

<x d
2= variance of M d =^p£/Nd= 94.5 X 5.5/100= 5.20;

(TA=Vtra-c2+ o- (f

2= Vl.73+ 5.20= 2.63;
A/cta= 10/2.63= 3.8.

Since A/^a exceeds 3.02, the test should be rejected.

It would seem that the same method is applicable when the tests
are made in duplicate only.
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When the test consists of but two lots and the results are incon-

sistent, there is no way of telling which is erroneous, and a retest is

necessary.
The retest may fall between the two previous determinations,

bringing all four percentages within the range of random samples.

In this case it would seem that the mean of all four should be taken as

the best estimate of the true germination. On the other hand, the

retest may demonstrate that one of the original percentages was
erroneous, and then the mean should be based on the three remaining
tests.

It would seem that the tolerance to be allowed in connection with
the mean percentage of accepted germination tests should be deter-

mined by the standard deviation of that percentage. As previously

explained, this is found by multiplying the percentage of live seed?

by the percentage of dead ones, dividing by the number, and extract-

ing the square root. (See formula 4, p. 10.) With the aid of the slide

rule the operation should take less than 10 seconds, or, if tables are

available, even less. To fix the tolerance, the standard deviation

should be multiplied by the degree of certainty expressed in terms
of the standard deviation.

The tolerances given in the official rules indicate a high degree of

certainty. The lowest is that for percentages of 70. The official

tolerance of 8 seeds at 70 per cent if based on 400 seeds is 3.49 times
the standard deviation, or a probability of 1 in 4,000. At percentages
above 95 the probability is too remote to be calculated from existing

tables. If based on 200 seeds, the probabilities range from 1 in 147
to 1 in 435 for the lower percentages and 1 in some millions when
percentages are above 95.

Perhaps there should be a word of caution against using the stand-
ard deviation of very high percentages in fixing tolerance. Unless
based on very large numbers the pgr standard deviation will be less

than the true value. It should be a safe rule to restrict the applica-

tion of the npq formula to tests where there are at least 10 dead seeds.

NOXIOUS WEEDS

Distributions that follow the Poisson series are rather uncommon
in biological work, but when any particular kind of seed is present
in very small quantities, the number of such seeds in successive
samples from the same bulk may be expected to follow this distri-

bution. As an example of one of the problems that the seed analyst
meets, take dodder in clover seeds and assume that the maximum
quantity of dodder allowed is represented by 10 dodder seeds in 50
grams of clover seed. Now, suppose that on analysis a given sample
of 50 grams shows 15 dodder seeds. Is it safe to assert that the lot

of seed from which the sample was drawn has in excess of 10 dodder
seeds per 50 grams? As in all such cases, the first thing to decide
is what is meant by safe, for this can never be certain. If this point
is settled by saying that to be safe the answer in a series of similar
decisions, on the average, must be right at least 99 times in 100,
and if the method of sampling also is satisfactory, the work can then
proceed. It is now a simple matter to answer the original question

—

reference to a table of Poisson distributions shows at once that from
a bulk having 10 dodder seeds per 50 grams, samples with 15 or more
should occur nearly five times in 100.
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In order to keep the chosen degree of certainty it is not safe to

reject any lot on the basis of a single sample unless this shows 19 or

more dodder seeds. Presumably the procedure would be to repeat
the test. This would certainly be necessary if errors on the side of

too great leniency are to be avoided. Except for the possibility of

detecting gross errors in sampling, the taking of two samples is ex-

actly the same as a single sample of double the size. Suppose the
second sample gave 17 dodder seeds. Obviously there is no discord-

ance between the two samples and they may be combined. This
gives 32 dodder seeds in 100 grams, where the limit is 20. Under a
mean of 20 the table shows that an excess of 12 or more should occur
only eight times in one thousand, and the lot may be rejected with
the assurance that injustice would be done less often than once in

one hundred times.

Once the degree of certainty is adopted, the limits of tolerance can
be read directly from the published tables. In fixing a degree of cer-

tainty it should be kept in mind that a probability of 0.01, or one
mistaken finding in 100, does not mean a mistake in 1 per cent of

the tests made, but only in 1 per cent of the cases similar to that
under investigation. The probability 0.01 has been taken arbitrarily

for purposes of illustration. Perhaps it is too rigid. If not and the
limits of tolerance are to be fixed between other than wide limits it

will be necessary to test rather large samples.
In determining the size of the sample it will be well to remember

that errors of random sampling are independent of the percentage of

noxious seeds present and are governed entirely by the number of

noxious seeds in the sample. The size of the sample should be so

chosen that the stated number of seeds in the sample will give the
desired accuracy. The published tables do not give the distribution

of numbers above 30, but for numbers larger than 30 the distribution

of departures above and below the mean are practically alike, and
resort may be had to the old measure of accuracy, the standard devia-
tion, and the use of the probability tables.

In a Poisson series the standard deviation equals the square root
of the mean. Thus, if a sample were taken of such size that the
stated or permitted number of seeds was 100 the standard deviation
would be 10. A range of 2.3 times the standard deviation is 23
seeds above and 23 seeds below 100, and the tolerance would be 77
to 123 if the degree of certainty is to be maintained at 1 in 100. If

the degree of certainty is lowered to say 0.04, or 1 in 25, the tolerance
would be reduced to 17 instead of 23 seeds.

There would seem to be three factors or variables involved in de-
terminations of noxious weeds. There is (1) the number of noxious
seeds in the sample, (2) the tolerance or number of seeds to be allowed
in excess of the stated number, and (3) the degree of certainty.

These three factors are interrelated, and if any two of them are fixed

the third is easily determined. In tests involving as many as 30
noxious seeds no tables are needed.

If the tolerance is expressed as a percentage of the number of

noxious seeds and the standard of certainty in terms of the standard
deviation, the relationship is given by the equation: Tolerance
equals the degree of certainty divided by the square root of the num-
ber. If tolerance is expressed as the number of seeds, the equation
is: Tolerance equals the square root of the number times the degree
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of certainty. As an illustration, suppose it is desired to know the
tolerance in excess that must be allowed in tests that should contain
50 noxious seeds as the stated number, the degree of certainty being
2.33, which corresponds to 1 mistake in 100. The tolerance then is

2.33 times the square root of 50, or 16.5, say 17, seeds. If with this

same lot it is desired to know how large a sample would need to be
tested to fix the tolerance at 20 per cent, the square root of the
number of seeds is ascertained by dividing 2.33 by 0.2. This equals
11.7, and since this is the square root of the number, the square of

it, or 136, is the number. That is, the sample would need to be of a
size that would have 136 noxious seeds if these were present in the
stated proportion.
These relations are more concisely stated as follows:

Let C= standard of certainty expressed in terms of the standard
deviation,

M= number of noxious seeds in sample,
T= tolerance (expressed in number of seeds),

T^^olerance expressed as a ratio=Tr/M;
then T=C X-v/M

M={CfT%Y
C=T%XJM, or T/VM

A somewhat related problem that may arise involving the Poisson
series is to determine the probability that the difference between
two samples supposed to have come from the same bulk may be due
to errors of random sampling. If the samples contain 30 or more
noxious seeds a normal distribution may be assumed; and, since the
standard deviation is the square root of the number, the standard
deviation of the difference will be the square root of twice the mean
number. The difference divided by this standard deviation gives

the value needed to enter the normal probability table. If the mean
number is much less than 30, however, this procedure will give a
standard deviation that is too small. It would seem that the proper
procedure is to combine the probabilities given in the Poisson tables.

A close approximation to the correct result is to take four times the
product of the two probabilities.

Suppose two samples gave 4 and 16 seeds. The assumed mean is

10, the table gives 0.029 as the probability of a minus departure of 6
and 0.049 as the probability of a plus departure of 6 ; 0.029 X 0.049 X 4 =
0.0057; that is, there is 1 chance in 175 that the two samples came
from the same population.

CONCLUSION

It is realized that the foregoing are but a few of the problems con-
fronting the seed analyst that call for statistical treatment. The
examples have been chosen as representative, and the aim has been
to show that methods involving neither complicated mathematics
nor laborious calculations may add precision to the decisions that
the seed analyst is called upon to make.

If a suggestion is permitted, it would be that in seed testing the
adoption of standard and uniform methods for the statistical treat-

ment of results is of the same importance as standard methods of

testing. Both are needed as a protection to the individual worker.
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